Introduction to Optimization

Rajib Kumar Bhattacharjya

Professor Department of Civil Engineering IIT Guwahati Email: rkbc@iitg.ernet.in

Single variable optimization

Objective function is defined as

Minimization/Maximization f(x)

Stationary points

For a continuous and differentiable function f(x), a stationary point x^* is a point at which the slope of the function is zero, i.e. f'(x) = 0 at $x = x^*$,

Global minimum and maximum

A function is said to have a global or absolute minimum at $x = x^*$ if $f(x^*) \le f(x)$ for all x in the domain over which f(x) is defined.

A function is said to have a global or absolute maximum at $x = x^*$ if $f(x^*) \ge f(x)$ for all x in the domain over which f(x) is defined.

Global minimum and maximum

$$f = 2x^4 - 7x^2 - \frac{1}{2}x + 6$$
$$-1.5 \le x \le 1.5$$

$$f = \sin(x)exp\left(-\left|\frac{x}{5}\right|\right)$$

 $-3.2\pi \le x \le 3.2\pi$

Introduction to optimization

Necessary condition

If a function f(x) is defined in the interval $a \le x \le b$ and has a relative minimum at $x = x^*$, Where $a \le x^* \le b$ and if f'(x) exists as a finite number at $x = x^*$, then $f'(x^*) = 0$

 $f(x^*) \le f(x^* + h)$

Proof

$$f'(x^*) = \lim_{h \to 0} \frac{f(x^* + h) - f(x^*)}{h}$$

Since x^* is a relative minimum

For all values of *h* sufficiently close to zero, hence

$$\frac{f(x^*+h) - f(x^*)}{h} \ge 0 \qquad \text{if } h \ge 0$$
$$\frac{f(x^*+h) - f(x^*)}{h} \le 0 \qquad \text{if } h \le 0$$

Necessary and sufficient conditions for optimality

Thus

 $f'(x^*) \ge 0$ If *h* tends to zero through +ve value

 $f'(x^*) \le 0$ If *h* tends to zero through -ve value

Thus only way to satisfy both the conditions is to have

Note:

- This theorem can be proved if x^* is a relative maximum
- Derivative must exist at x*
- The theorem does not say what happens if a minimum or maximum occurs at an end point of the interval of the function
- It may be an inflection point also.

Sufficient condition

Suppose at point x^* , the first derivative is zero and first nonzero higher derivative is denoted by n, then

- 1. If n is odd, x^* is an inflection point
- 2. If n is even, x^* is a local optimum
 - ✓ If the derivative is positive, x^* is a local minimum
 - \checkmark If the derivative is negative, x^* is a local maximum

 $f'(x^*) = 0$ $f''(x^*) = 0$ $f^3(x^*) = 0$ $f^4(x^*) = 0$

 $f^n(x^*) \neq 0$

Sufficient conditions for optimality

Proof Apply Taylor's series

$$f(x^* + h) = f(x^*) + hf'(x^*) + \frac{h^2}{2!}f''(x^*) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(x^*) + \frac{h^n}{n!}f^n(x^*)$$

Since
$$f'(x^*) = f''(x^*) = \dots = f^{n-1}(x^*) = 0$$

$$f(x^* + h) - f(x^*) = \frac{h^n}{n!} f^n(x^*)$$

When *n* is even
$$\frac{h^n}{n!} \ge 0$$

Thus if $f^{n}(x^{*})$ is positive $f(x^{*} + h) - f(x^{*})$ is positive Hence it is local minimum Thus if $f^{n}(x^{*})$ negative $f(x^{*} + h) - f(x^{*})$ is negative Hence it is local maximum

When *n* is odd, $\left(\frac{h^n}{n!}\right)$ changes sign with the change in the sign of *h*. Hence it is an inflection point R.K. Bhattacharjya/CE/IITG

Sufficient conditions for optimality

Example

$$f(x) = x^3 - 10x - 2x^2 - 10$$

Apply necessary condition

$$f'(x) = 3x^2 - 10 - 4x = 0$$

Solving for x = 2.61 and -1.28

These two points are stationary points

Apply sufficient condition f''(x) = 6x - 4

f''(2.61) = 11.66 positive and n is even f''(-1.28) = -11.68 negative and n is even

 $x^* = 2.61$ is a minimum point

$$x^* = -1.28$$
 is a maximum point

Multivariable optimization without constraints

Minimize
$$f(X)$$
 Where $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

Necessary condition for optimality

If f(X) has an extreme point (maximum or minimum) at $X = X^*$ and if the first partial Derivatives of f(X) exists at X^* , then

$$\frac{\partial f(X^*)}{\partial x_1} = \frac{\partial f(X^*)}{\partial x_2} = \dots = \frac{\partial f(X^*)}{\partial x_n} = 0$$

Sufficient condition for optimality

The sufficient condition for a stationary point X^* to be an extreme point is that the matrix of second partial derivatives of f(X) evaluated at X^* is

(1) positive definite when X^* is a relative minimum

(2) negative definite when X^* is a relative maximum

(3) neither positive nor negative definite when X^* is neither a minimum nor a maximum

Proof Taylor series of two variable function

$$f(x + \Delta x, y + \Delta y) = f(x, y) + \Delta x \frac{\partial f}{\partial x} + \Delta y \frac{\partial f}{\partial y} + \frac{1}{2!} \left(\Delta x^2 \frac{\partial^2 f}{\partial x^2} + 2\Delta x \Delta y \frac{\partial^2 f}{\partial x \partial y} + \Delta y^2 \frac{\partial^2 f}{\partial y^2} \right) + \cdots$$

$$F(x + \Delta x, y + \Delta y) = f(x, y) + \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} + \frac{1}{2!} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} + \cdots$$

Multivariable optimization without constraints

$$f(X^* + h) = f(X^*) + h^T \nabla f(X^*) + \frac{1}{2!} h^T H h + \cdots$$

Since X^* is a stationary point, the necessary condition gives that $\nabla f(X^*) = 0$

Thus

$$f(X^* + h) - f(X^*) = \frac{1}{2!}h^T H h + \cdots$$

Now, X^* will be a minima, if $h^T H h$ is positive

 X^* will be a maxima, if $h^T H h$ is negative

 $h^T H h$ will be positive if H is a positive definite matrix

 $h^{T}Hh$ will be negative if **H** is a negative definite matrix

A matrix *H* will be positive definite if all the eigenvalues are positive, *i.e.* all the λ values are positive which satisfies the following equation

 $|\boldsymbol{A} - \lambda \boldsymbol{I}| = 0$

Another test: Evaluation of determinants

$$A_{1} = |a_{11}|$$

$$A_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$A_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$A_{n} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & a_{n4} & \cdots & a_{nn} \end{vmatrix}$$

- ✓ A matrix *A* will be positive definite if any only if all the values $A_1, A_2, A_3, ..., A_n$ are positive.
- ✓ The matrix will be negative definite is and only if the sign of A_j is $(-1)^j$ for j = 1, 2, 3, ..., n

Multivariable optimization without constraints

Example

$$f(x_1, x_2) = (x_1 - 10)^2 + (x_2 - 10)^2$$

Necessary condition

$$\frac{\partial f}{\partial x_1} = 2(x_1 - 10) = 0 \Rightarrow x_1 = 10$$
$$\frac{\partial f}{\partial x_2} = 2(x_2 - 10) = 0 \Rightarrow x_2 = 10 \quad X^* = \begin{pmatrix} 10\\10 \end{pmatrix}$$

Sufficient condition

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$|H - \lambda I| = \begin{vmatrix} 2 - \lambda & 0 \\ 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(2 - \lambda)$$

Thus the eigenvalues of the matrix H are 2, and 2. The H is a positive definite matrix and the X^* is a relative minimum

$$A_{1} = |a_{11}| = 2$$
$$A_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$$

x1

Both A_1 and A_2 are positive The *H* is a positive definite matrix Hence X^* is a relative minimum

= 0

Unimodal and duality principle

Optimal solution $x^* = 0$

Optimal solution $x^* = 0$

Minimization f(x) = Maximization -f(x)

16

$0 \le \lambda \le 1$